
Linux network metrics: why
you should use nstat
instead of netstat
Loïc Pefferkorn

TL;DR: This article is about the differences between
netstat and nstat regarding Linux system network
metrics, and why nstat is superior to netstat (at least for
this purpose.)

Updates

2016-04-12 - note about ss command

Network metrics with netstat

netstat can be found in the net-tools software collection.
Depending on your linux Distribution, it may not be
installed by default, like in Archlinux since 2011.

Below is the output of netstat –statistics on my system:

$ netstat --statistics

Ip:

 34151 total packets received

 0 forwarded

 0 incoming packets discarded

 34108 incoming packets delivered

https://loicpefferkorn.net/
http://linux.die.net/man/8/netstat
http://linux.die.net/man/8/rtacct
http://www.linuxfoundation.org/collaborate/workgroups/networking/net-tools
https://www.archlinux.org/news/deprecation-of-net-tools/

 38436 requests sent out

Icmp:

 6 ICMP messages received

 0 input ICMP message failed.

 ICMP input histogram:

 destination unreachable: 6

 6 ICMP messages sent

 0 ICMP messages failed

 ICMP output histogram:

 destination unreachable: 6

IcmpMsg:

 InType3: 6

 OutType3: 6

Tcp:

 365 active connections openings

 0 passive connection openings

 17 failed connection attempts

 2 connection resets received

 14 connections established

 35389 segments received

 39132 segments send out

 83 segments retransmited

 1 bad segments received.

 156 resets sent

Udp:

 655 packets received

 1 packets to unknown port received.

 0 packet receive errors

 662 packets sent

 0 receive buffer errors

 0 send buffer errors

 IgnoredMulti: 7

UdpLite:

TcpExt:

 137 TCP sockets finished time wait in fast timer

 337 delayed acks sent

 Quick ack mode was activated 47 times

 3 packets directly queued to recvmsg prequeue.

 21584 packet headers predicted

 7317 acknowledgments not containing data payload received

 1128 predicted acknowledgments

 2 congestion windows recovered without slow start after partial ack

 19 other TCP timeouts

 TCPLossProbes: 20

 TCPLossProbeRecovery: 2

 47 DSACKs sent for old packets

 8 DSACKs received

 46 connections reset due to unexpected data

 2 connections reset due to early user close

 5 connections aborted due to timeout

 TCPDSACKIgnoredNoUndo: 6

 TCPRcvCoalesce: 6121

 TCPOFOQueue: 2421

 TCPChallengeACK: 1

 TCPSYNChallenge: 1

 TCPSpuriousRtxHostQueues: 14

 TCPAutoCorking: 1123

 TCPSynRetrans: 26

 TCPOrigDataSent: 16502

 TCPHystartTrainDetect: 1

 TCPHystartTrainCwnd: 16

 TCPKeepAlive: 1292

IpExt:

 InMcastPkts: 27

 OutMcastPkts: 2

 InBcastPkts: 7

 InOctets: 28620819

 OutOctets: 22032907

Some sections are standardized and based on RFCs MIB:

Section Ip, Icmp: rfc2011 SNMPv2-MIB-IP
Section Tcp rfc2012 SNMPv2-MIB-TCP
Section Udp rfc2013 SNMPv2-MIB-UDP

To match netstat output with RFCs variables names, I did
not find another way apart from reading netstat source
code, especially statistics.c, where the relation are stored
in arrays, extract:

The remaining sections (TcpExt, IpExt, …) are less rigid, as
far as I know they have been added once someone has
proven them useful.

net-tools is officially obsolete in favour of iproute2,
quote from linuxfoundation.org

 InMcastOctets: 864

 OutMcastOctets: 64

 InBcastOctets: 1202

 InNoECTPkts: 34992

{"Forwarding", N_("Forwarding is %s"), i_forward | I_STATIC},

{"ForwDatagrams", N_("%llu forwarded"), number},

{"FragCreates", N_("%llu fragments created"), opt_number},

{"FragFails", N_("%llu fragments failed"), opt_number},

{"FragOKs", N_("%llu fragments received ok"), opt_number},

{"InAddrErrors", N_("%llu with invalid addresses"), opt_number},

{"InDelivers", N_("%llu incoming packets delivered"), number},

https://tools.ietf.org/html/rfc2011
https://tools.ietf.org/html/rfc2012
https://tools.ietf.org/html/rfc2013
https://sourceforge.net/p/net-tools/code/ci/master/tree/statistics.c#l68
http://www.linuxfoundation.org/collaborate/workgroups/networking/net-tools

Please keep in mind that most net-tools programs are
obsolete now

Metrics with nstat

nstat is provided by the iproute2 collection, which is
usually also the name of the package in many Linux
distributions. This package also provides the most well-
known command ip

Extract of non-zero metrics:

$ nstat -a

#kernel

IpInReceives 69783 0.0

IpInDelivers 69469 0.0

IpOutRequests 68643 0.0

IcmpInMsgs 6 0.0

IcmpInDestUnreachs 6 0.0

IcmpOutMsgs 6 0.0

IcmpOutDestUnreachs 6 0.0

IcmpMsgInType3 6 0.0

IcmpMsgOutType3 6 0.0

TcpActiveOpens 1011 0.0

TcpAttemptFails 37 0.0

TcpEstabResets 27 0.0

TcpInSegs 71580 0.0

TcpOutSegs 71010 0.0

TcpRetransSegs 410 0.0

TcpInErrs 4 0.0

TcpOutRsts 369 0.0

UdpInDatagrams 1348 0.0

UdpNoPorts 1 0.0

UdpOutDatagrams 1366 0.0

UdpIgnoredMulti 47 0.0

Ip6InReceives 5236 0.0

Ip6InAddrErrors 421 0.0

Ip6InDelivers 4693 0.0

Ip6OutRequests 4913 0.0

Ip6InMcastPkts 780 0.0

Ip6OutMcastPkts 200 0.0

Ip6InOctets 3743259 0.0

Ip6OutOctets 710669 0.0

Ip6InMcastOctets 71232 0.0

Ip6OutMcastOctets 14384 0.0

Ip6InNoECTPkts 5725 0.0

Icmp6InMsgs 972 0.0

Icmp6InErrors 6 0.0

Icmp6OutMsgs 709 0.0

Icmp6InDestUnreachs 148 0.0

Icmp6InEchos 102 0.0

Icmp6InRouterAdvertisements 140 0.0

Icmp6InNeighborSolicits 521 0.0

Icmp6InNeighborAdvertisements 61 0.0

Icmp6OutDestUnreachs 148 0.0

Icmp6OutEchoReplies 102 0.0

Icmp6OutRouterSolicits 2 0.0

Icmp6OutNeighborSolicits 240 0.0

Icmp6OutNeighborAdvertisements 205 0.0

Icmp6OutMLDv2Reports 12 0.0

Icmp6InType1 148 0.0

Icmp6InType128 102 0.0

Icmp6InType134 140 0.0

Icmp6InType135 521 0.0

Icmp6InType136 61 0.0

Icmp6OutType1 148 0.0

Icmp6OutType129 102 0.0

Icmp6OutType133 2 0.0

Icmp6OutType135 240 0.0

Icmp6OutType136 205 0.0

Icmp6OutType143 12 0.0

Udp6InDatagrams 51 0.0

Udp6OutDatagrams 53 0.0

TcpExtTW 349 0.0

TcpExtDelayedACKs 811 0.0

TcpExtDelayedACKLost 137 0.0

TcpExtTCPPrequeued 14 0.0

TcpExtTCPHPHits 44384 0.0

TcpExtTCPPureAcks 10490 0.0

TcpExtTCPHPAcks 4460 0.0

TcpExtTCPLossUndo 5 0.0

TcpExtTCPSlowStartRetrans 4 0.0

TcpExtTCPTimeouts 113 0.0

TcpExtTCPLossProbes 46 0.0

TcpExtTCPLossProbeRecovery 2 0.0

TcpExtTCPDSACKOldSent 136 0.0

TcpExtTCPDSACKRecv 12 0.0

TcpExtTCPAbortOnData 101 0.0

TcpExtTCPAbortOnClose 21 0.0

TcpExtTCPAbortOnTimeout 23 0.0

TcpExtTCPDSACKIgnoredNoUndo 10 0.0

TcpExtTCPRcvCoalesce 15084 0.0

TcpExtTCPOFOQueue 5832 0.0

TcpExtTCPChallengeACK 4 0.0

TcpExtTCPSYNChallenge 4 0.0

TcpExtTCPSpuriousRtxHostQueues 224 0.0

TcpExtTCPAutoCorking 1242 0.0

TcpExtTCPSynRetrans 83 0.0

TcpExtTCPOrigDataSent 23610 0.0

TcpExtTCPHystartTrainDetect 3 0.0

TcpExtTCPHystartTrainCwnd 48 0.0

TcpExtTCPKeepAlive 2528 0.0

IpExtInMcastPkts 157 0.0

IpExtOutMcastPkts 2 0.0

IpExtInBcastPkts 47 0.0

IpExtInOctets 67200127 0.0

IpExtOutOctets 24997379 0.0

IpExtInMcastOctets 5024 0.0

IpExtOutMcastOctets 64 0.0

IpExtInBcastOctets 8252 0.0

IpExtInNoECTPkts 74074 0.0

In addition to absolute values of counters given by the -a
option, nstat can also provide a delta since its last
execution, to ease live system debugging:

$ nstat

#kernel

IpInReceives 1 0.0

IpInDelivers 1 0.0

IpOutRequests 1 0.0

TcpInSegs 1 0.0

TcpOutSegs 1 0.0

TcpExtTCPOrigDataSent 1 0.0

IpExtInOctets 54 0.0

IpExtOutOctets 58 0.0

IpExtInNoECTPkts 1 0.0

$

All values, even the zero ones with --zero

$ nstat --zero

#kernel

IpInReceives 2 0.0

IpInHdrErrors 0 0.0

IpInAddrErrors 0 0.0

IpForwDatagrams 0 0.0

IpInUnknownProtos 0 0.0

IpInDiscards 0 0.0

(...)

Finally, metrics can be displayed in JSON format, to ease
their processing by all your fancy tools:

Differences

Output

netstat appears more user-friendly by describing some
metrics with plain English, while nstat displays raw
information.

This can be considered as an advantage to roughly
identify the purpose of the metric, but also a drawback if
you are interested in the RFC name of the variable, going
through netstat source code is hence a mandatory step.

Output comparison of 3 metrics:

::2,:4,:2,:2,"Ip6OutRequests":4,"Ip6InOctets":776,"Ip6OutOctets"

nstat

IpInReceives 74923

IpOutRequests 73128

IcmpInMsgs 6

netstat

Ip:

 74923 total packets received

 73128 requests sent out

Icmp:

 6 ICMP messages received

Parsing nstat output is also easier, even almost done
thanks to the JSON output format option.

Metrics completeness

Both netstat and nstat read the metrics provided by the
kernel through the /proc virtual filesystem:

$ strace -e open nstat 2>&1 > /dev/null|grep /proc

open("/proc/uptime", O_RDONLY) = 4

open("/proc/net/netstat", O_RDONLY) = 4

open("/proc/net/snmp6", O_RDONLY) = 4

open("/proc/net/snmp", O_RDONLY) = 4

$ strace -e open netstat -s 2>&1 > /dev/null|grep /proc

open("/proc/net/snmp", O_RDONLY) = 3

open("/proc/net/netstat", O_RDONLY) = 3

However, only nstat retrieves all the metrics provided by

the kernel. Netstat seems to skip some of them,
breakdown of metrics number per section:

Netstat Nstat Difference

Ip 6 17 +11

Ip6 14 32 +18

Icmp 6 29 +23

Icmp6 25 46 +21

Tcp 10 10 0

Udp 7 8 +1

Udp6 4 8 +4

UdpLite 0 15 +15

UdpLite6 0 7 +7

TcpExt 48 116 +68

IpExt 11 17 +6

Why? Just because netstat maintains a static table of
metrics entries, while nstat parses the whole /proc files.
Since netstat is obsolete, new entries are not taken into
account.

Note about ss command

ss is another utility to investigate sockets provided by
iproute2 package, like nstat.

Unlike netstat and nstat, ss does not provide system-wide
network statistics, but is more oriented towards analysis
of established sockets connections from many families

http://linux.die.net/man/8/ss

(raw, tcp, udp, Unix domain, dccp)

The only overall statistics option --summary is limited to

the opened sockets:

However ss is way more comprehensive when it comes to
TCP connection internals, by reading /proc/net/tcp.

For instance, for an established TCP connection you can
retrieve almost every number that characterize the state
of an established TCP connection:

Every field will be explained in another blog post, but here
you can recognize the congestion control algorithm
cubic, various TCP timers rto, rtt, …

$ ss --summary

Total: 433 (kernel 0)

TCP: 31 (estab 17, closed 1, orphaned 0, synrecv 0, timewait 1/0

Transport Total IP IPv6

* 0 - -

RAW 2 0 2

UDP 22 10 12

TCP 30 18 12

INET 54 28 26

FRAG 0 0 0

$ ss --info --tcp|tail -1

 cubic wscale:7,7 rto:223.333 rtt:22.325/0.746 ato:40 mss:1428 cwnd:2 ssthresh:2 bytes_acked:12935 bytes_received:19093 segs_out:113 segs_in:57 send 1.0Mbps lastsnd:1226 lastrcv:1203 lastack:1203 pacing_rate 1.2Mbps retrans:0/4 rcv_rtt:27.083 rcv_space:28800

Another super feature of ss is its filters based on the
states of a connection, more handy than grepping netstat
output:

In addition to all the TCP states, others grouping keywords
are possible:

The manpage provides useful examples:

STATE-FILTER

 STATE-FILTER allows to construct arbitrary set of states to match. Its syntax is sequence of keywords state and exclude followed by identi‐

 fier of state.

 Available identifiers are:

 All standard TCP states: established, syn-sent, syn-recv, fin-wait-1, fin-wait-2, time-wait, closed, close-wait, last-ack, listen

 and closing.

 all - for all the states

 connected - all the states except for listen and closed

 synchronized - all the connected states except

 bucket - states, which are maintained as minisockets, i.e. time-wait and syn-recv

 big - opposite to bucket

 ss -o state established '(dport = :ssh or sport = :ssh)'

 Display all established ssh connections.

Try that with netstat :)

Summary

nstat offers all the linux network metrics provided by
the kernel, but without any knowledge of the
aforementioned RFCs their names might look more or
less cryptic.
netstat is obsolete and does not provide all the
available metrics, but many are described with plain
English, which is easier to understand when looking
for simple metrics.
If you want to extract every possible information on
your established connections, ss is what you are
looking for.

Plan

I plan to write another article to describe every metric
provided by nstat, if you are interested please leave a
comment.

 ss -x src /tmp/.X11-unix/*

 Find all local processes connected to X server.

 ss -o state fin-wait-1 '(sport = :http or sport = :https)'

 List all the tcp sockets in state FIN-WAIT-1

