面向接口编程详解(二)编程实例

0
JAVA学到接口了,发现书中说要培养面向接口编程的思想,可怎么也不明白,后来在Google中发现了这3篇连载,专讲面向接口编程的,这是第二篇,写的非常好,特此转发此文章,并存档保存!再此非常感谢作者“T2噬菌体”-张洋,文章出自CodingLabs,分割线下面是原文,在格式和文字上我会做稍许调整以适合我自己博客的风格,另外原作者用的是C来做的例子说明,我把其改成了JAVA!

通过上一篇文章的讨论,我想各位朋友对“面接接口编程”有了一个大致的了解。那么在这一篇里,我们用一个例子,让各位对这个重要的编程思想有个直观的印象。为充分考虑到初学者,所以这个例子非常简单,望各位高手见谅。

问题的提出

定义:现在我们要开发一个应用,模拟移动存储设备的读写,即计算机与U盘、MP3、移动硬盘等设备进行数据交换。

上下文(环境):已知要实现U盘、MP3播放器、移动硬盘三种移动存储设备,要求计算机能同这三种设备进行数据交换,并且以后可能会有新的第三方的移动存储设备,所以计算机必须有扩展性,能与目前未知而以后可能会出现的存储设备进行数据交换。各个存储设备间读、写的实现方法不同,U盘和移动硬盘只有这两个方法,MP3Player还有一个PlayMusic方法。

名词定义:数据交换={读,写}

看到上面的问题,我想各位脑子中一定有了不少想法,这是个很好解决的问题,很多方案都能达到效果。下面,我列举几个典型的方案。

解决方案列举

方案一:
分别定义FlashDisk、MP3Player、MobileHardDisk三个类,实现各自的Read和Write方法。然后在Computer类中实例化上述三个类,为每个类分别写读、写方法。例如,为FlashDisk写ReadFromFlashDisk、WriteToFlashDisk两个方法。总共六个方法。

方案二:
定义抽象类MobileStorage,在里面写虚方法Read和Write,三个存储设备继承此抽象类,并重写Read和Write方法。Computer类中包含一个类型为MobileStorage的成员变量,并为其编写get/set器,这样Computer中只需要两个方法:ReadData和WriteData,并通过多态性实现不同移动设备的读写。

方案三:
与方案二基本相同,只是不定义抽象类,而是定义接口IMobileStorage,移动存储器类实现此接口。Computer中通过依赖接口IMobileStorage实现多态性。

方案四:
定义接口IReadable和IWritable,两个接口分别只包含Read和Write,然后定义接口IMobileStorage接口继承自IReadable和IWritable,剩下的实现与方案三相同。

分析解决方案

方案一:
最直白,实现起来最简单,但是它有一个致命的弱点:可扩展性差。或者说,不符合“开放-关闭原则”(注:意为对扩展开放,对修改关闭)。当将来有了第三方扩展移动存储设备时,必须对Computer进行修改。这就如在一个真实的计算机上,为每一种移动存储设备实现一个不同的插口、并分别有各自的驱动程序。当有了一种新的移动存储设备后,我们就要将计算机大卸八块,然后增加一个新的插口,在编写一套针对此新设备的驱动程序。这种设计显然不可取。

此方案的另一个缺点在于,冗余代码多。如果有100种移动存储,那我们的Computer中岂不是要至少写200个方法,这是不能接受的!

方案二和方案三
之所以将这两个方案放在一起讨论,是因为他们基本是一个方案(从思想层面上来说),只不过实现手段不同,一个是使用了抽象类,一个是使用了接口,而且最终达到的目的应该是一样的。

我们先来评价这种方案,首先它解决了代码冗余的问题,因为可以动态替换移动设备,并且都实现了共同的接口,所以不管有多少种移动设备,只要一个Read方法和一个Write方法,多态性就帮我们解决问题了。而对第一个问题,由于可以运行时动态替换,而不必将移动存储类硬编码在Computer中,所以有了新的第三方设备,完全可以替换进去运行。这就是所谓的“依赖接口,而不是依赖与具体类”,不信你看看,Computer类只有一个MobileStorage类型或IMobileStorage类型的成员变量,至于这个变量具体是什么类型,它并不知道,这取决于我们在运行时给这个变量的赋值。如此一来,Computer和移动存储器类的耦合度大大下降。

那么这里该选抽象类还是接口呢?还记得第一篇文章我对抽象类和接口选择的建议吗?看动机。这里,我们的动机显然是实现多态性而不是为了代码复用,所以当然要用接口。

方案四:
它和方案三很类似,只是将“可读”和“可写”两个规则分别抽象成了接口,然后让IMobileStorage再继承它们。这样做,显然进一步提高了灵活性,但是,这有没有设计过度的嫌疑呢?我的观点是:这要看具体情况。如果我们的应用中可能会出现一些类,这些类只实现读方法或只实现写方法,如只读光盘,那么这样做也是可以的。如果我们知道以后出现的东西都是能读又能写的,那这两个接口就没有必要了。其实如果将只读设备的Write方法留空或抛出异常,也可以不要这两个接口。总之一句话:理论是死的,人是活的,一切从现实需要来,防止设计不足,也要防止设计过度。

结论:
在这里,我们姑且认为以后的移动存储都是能读又能写的,所以我们选方案三

实现

下面,我们要将解决方案加以实现。我选择的语言是JAVA,使用其他语言的朋友一样可以参考。首先编写IMobileStorage接口:

IMobileStorage

package computer;

public interface IMobileStorage {
	public void read(); //从自身读数据
	public void write(); //将数据写入自身
}

代码比较简单,只有两个方法,没什么好说的,接下来是三个移动存储设备的具体实现代码:

FlashDisk

package computer;

public class FlashDisk implements IMobileStorage {
	@Override //伪代码
	public void read() {
		System.out.println("Reading from FlashDisk……");
		System.out.println("Read finished!");
	}
	@Override
	public void write() {
		System.out.println("Writing to FlashDisk……");
		System.out.println("Write finished!");
	}
}

MP3Player

package computer;

public class MP3Player implements IMobileStorage {
	@Override
	public void read() {
		System.out.println("Reading from MP3Player……");
		System.out.println("Read finished!");
	}

	@Override
	public void write() {
		System.out.println("Writing to MP3Player……");
		System.out.println("Write finished!");
	}
	public void PlayMusic() {
		System.out.println("Music is playing……");	
	}
}

MobileHardDisk

package computer;

public class MobileHardDisk implements IMobileStorage {
	@Override
	public void read() {
		System.out.println("Reading from MobileHardDisk……");
		System.out.println("Read finished!");
	}

	@Override
	public void write() {
		System.out.println("Writing to MobileHardDisk……");
		System.out.println("Write finished!");
	}
}

可以看到,它们都实现了IMobileStorage接口,并重写了各自不同的Read和Write方法。下面,我们来写Computer:
Computer

package computer;

public class Computer {
	private IMobileStorage _device;
    public IMobileStorage get_device() {
		return _device;
	}
	public void set_device(IMobileStorage device) { //无返回用void
		//上面传递的device,是指devices继承接口ImobileStorage
		//如mp3,mobilehardisk和newmobilestorage都是ImobileStorage的子集
		//包括后面的superStorage的adapter
		this._device = device; //没做任何限制
	}
	public void ReadData(){
		this._device.read();
	}
	public void WriteData(){
		this._device.write();
	}
}

其中的“set_device”就是可替换的移动设备,包括上面提到的3个移动设备。通过setter和getter方法设置成员变量,注意此处在方法中没有做任何限制,所以跟直接赋值没什么区别,详细解释看《Java Learning – Getter and Setter。OK!下面我们来测试我们的“电脑”和“移动存储设备”是否工作正常。我用的是Eclipse测试的,具体代码如下:
测试代码1

package computer;

public class Program {

	public static void main(String[] args) {
		Computer computer = new Computer();
        IMobileStorage mp3Player = new MP3Player();
        IMobileStorage flashDisk = new FlashDisk();
        IMobileStorage mobileHardDisk = new MobileHardDisk();
        
		System.out.println("I inserted my MP3 Player into my computer and copy some music to it:");
        computer.set_device(mp3Player);
        computer.WriteData();
        System.out.println("");
        
		System.out.println("Well,I also want to copy a great movie to my computer from a mobile hard disk:");
        computer.set_device(mobileHardDisk);
        computer.ReadData();
        System.out.println("");
        
		System.out.println("OK!I have to read some files from my flash disk and copy another file to it:");
        computer.set_device(flashDisk);
        computer.ReadData();
        computer.WriteData();
        System.out.println("");
	}
	
}

现在编译、运行程序,如果没有问题,将看到如下运行结果:
java-learn-interface-02
好的,看来我们的系统工作良好。不过刚过了一个星期,就有人送来了新的移动存储设备NewMobileStorage,让我测试能不能用,我微微一笑,心想这不是小菜一碟,让我们看看面向接口编程的威力吧!将测试程序修改成如下:
测试代码2

package computer;

public class Program2 {

	public static void main(String[] args) {
		Computer computer = new Computer();
		IMobileStorage newMobileStorage = new NewMobileStorage();

		System.out.println("Now,I am testing the new mobile storage:");
        computer.set_device(newMobileStorage);
        computer.ReadData();
        computer.WriteData();
        System.out.println("");
}
}

编译、运行、看结果:
java-learn-interface-03
哈哈,神奇吧,Computer一点都不用改动,就可以使新的设备正常运行。这就是所谓“对扩展开放,对修改关闭”。
注意:原作者这里少说了一个类,就是除了需要新的Program2测试类外,还需要这个设备的接口类。不是说对修改关闭么?在现实世界中,当你把一个新的移动设备插到系统后,需要安装驱动就可以工作了,它没让你把计算机反编译,然后把这个新设备加进去把?!所以“修改关闭”说的是计算机本身。扩展就是接口,也就是这里的驱动。所以当你拿一个新设备时,必须事前为这个设备写驱动以至于可以跟计算机本身的接口通信。

又过了几天,有人通知我说又有一个叫SuperStorage的移动设备要接到我们的Computer上,我心想来吧,管你是“超级存储”还是“特级存储”,我的“面向接口编程大法”把你们统统搞定。但是,当设备真的送来,我傻眼了,开发这个新设备的团队没有拿到我们的IMobileStorage接口,自然也没有遵照这个约定。这个设备的读、写方法不叫Read和Write,而是叫rd和wt,这下完了……不符合接口啊,插不上。但是,不要着急,我们回到现实来找找解决的办法。

我们一起想想:如果你的Computer上只有USB接口,而有人拿来一个PS/2的鼠标要插上用,你该怎么办?想起来了吧,是不是有一种叫“PS/2-USB”转换器的东西?也叫适配器,可以进行不同接口的转换。对了!程序中也有转换器。

这里,我要引入一个设计模式,叫“Adapter”。它的作用就如现实中的适配器一样,把接口不一致的两个插件接合起来。由于本篇不是讲设计模式的,而且Adapter设计模式很好理解,所以我就不细讲了,先来看我设计的类图吧:
注意:关于UML图,可以看我的另一篇文章,我根据EA生成了完整的UML图《Java Learning – Enterprise Architect for UML
java-learn-interface-01
如图所示,虽然SuperStorage没有实现IMobileStorage,但我们定义了一个实现IMobileStorage的SuperStorageAdapter,它聚合了一个SuperStorage,并将rd和wt适配为Read和Write,SuperStorageAdapter。具体代码如下:

SuperStorageAdapter

package computer;

public class SuperStorageAdapter implements IMobileStorage {
	private SuperStorage _superStorage;
	
    public SuperStorage get_superStorage() {
		return _superStorage;
	}
    
	public void set_superStorage(SuperStorage X) {
		this._superStorage = X;
	}

	@Override
	public void read() {
		// computer要通过这个函数访问superStorage的内容
		// 下面是调用superStorage的外部函数rd和wt
		this._superStorage.rd();
	}
	
	@Override
	public void write() {
		this._superStorage.wt();
	}
}

好,现在我们来测试适配过的新设备,测试代码如下:

测试代码3

package computer;

public class Program3 {
	
	public static void main(String[] args) {
		Computer computer = new Computer();
		SuperStorageAdapter superStorageAdapter = new SuperStorageAdapter();
		SuperStorage superX = new SuperStorage();
		
		superStorageAdapter.set_superStorage(superX);
		// 上面这行很关键,“superX”是SuperStorage()的对象
		// adapter中的“_superStorage”是SuperStorage的变量
		// 在computer调用adapter前,必须给变量赋值,否则会报NullPointerException
		// 赋值后,就可以间接的调用SuperStorage中的外部函数rd和wt了
		
		System.out.println("Now,I am testing the new super storage with adapter:");
        computer.set_device(superStorageAdapter);
        computer.ReadData();
        computer.WriteData();
        System.out.println("");
		
	}
}

运行后会得到如下结果:
java-learn-interface-04

下面是我在computer包中的所有测试类截图:

java-learn-interface-05
OK!虽然遇到了一些困难,不过在设计模式的帮助下,我们还是在没有修改Computer任何代码的情况下实现了新设备的运行。好了,理论在第一篇讲得足够多了,所以这里我就不多讲了。希望各位朋友结合第一篇的理论和这个例子,仔细思考面向接口的问题。当然,不要忘了结合现实。下一篇,我将解析经典设计模式中的面向接口编程思想和.NET平台分层架构中接口的运用。

本文出自 Frank's Blog

版权声明:


本文链接:面向接口编程详解(二)编程实例
版权声明:本文为原创文章,仅代表个人观点,版权归 Frank Zhao 所有,转载时请注明本文出处及文章链接
你可以留言,或者trackback 从你的网站

留言哦

blonde teen swallows load.xxx videos